We have a logarithmic property that states:
ln(a) - ln(b) = ln (a / b)
We're given a < b, so (a / b) < 1
Therefore:
ln (a / b) < 0
And since ln(a) - ln(b) = ln (a / b)
Then Ln(a) - Ln(b) < 0
Add Ln(b) to each side and we get:
Ln(a) - Ln(b) + Ln(b) < 0 + Ln(b)
Cancel the Ln(b) on the left side and we get:
Ln(a)<Ln(b)
So this is TRUE
Last edited: Jan 15, 2024
ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfmLyuudSnoK2xX6m1s7HAnaponJWpsrO5yKecZq%2BYmsGpsdFmq6GdXajBosDEppynrF2ewG7A0a6cZqeiYrOiuNKeZKKeXWV6onnBZquhnZ5iua95wGajp2WSY395fpFo